An overview of chemical exposures in your environment

Lunch & Learn: EPA Finance Center 5/18/17

Laura Carlson & Jeanette Reyes* National Center for Environmental Assessment

*Oak Ridge Institute for Science and Education Participans

Conflict of Interest Statement

- We have no conflicts of interest to disclose.
- ➤ The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

Chemical Regulation

- ▶ Toxic Substances Control Act (TSCA)
 - "chemicals of commerce"
 - ▶ Recently revised in 2015-2016; Lautenburg Act for Chemical Safety
- ▶ Federal Insecticide Fungicide Rodenticide Act (FIFRA)
 - ▶ Herbicides, insecticides, and pesticides
- ► Food Drug Administration (FDA)
 - ▶ Drugs, medical devices

Introduction to Toxicology

- Integrative discipline concerned with study of adverse effects of chemicals on living organisms
 - Ecotoxicology, environmental toxicology, human health
- Factors influencing toxicity
 - dosage, acute/chronic exposures, route of exposure, species, age, sex, environment
 - ▶ History: "The Dose makes the poison" -Paracelsus
- Testing methods
 - Non-human animals
 - Alternative testing methods (high throughput, modeling, etc)

The Chemical Problem

- Too many chemicals, not enough time/resources
 - ▶ Estimated 80,000 chemicals registered
 - ▶ Current estimates ~30,000 substances in commercial use
- Expense associated with testing
 - ▶ EPA guideline study for developmental neurotoxicity can take 1-2 years, cost \$1 million
 - ▶ Large numbers of chemicals, difficult to test with traditional methods
- Human Health Risk Assessment: function of <u>hazard</u> <u>identification</u>, <u>dose-response relationship</u>, <u>exposure</u> <u>characterization</u>, and <u>risk characterization</u>

National Center for Environmental Assessment

- ▶ Part of the Office of Research & Development
 - » Split across multiple divisions: RTP, Cincinnati, Washington
- Diverse Staff
 - Biologists, chemists, ecologists, engineers, epidemiologists, toxicologists, & statisticians
- Guidance Documents / Work Products
 - Guidance documents
 - Criteria documents
 - Risk assessments
 - » Risk assessment methodologies
 - Models

National Center for Environmental Assessment

- human health and ecological risk assessment- a robust scientific process used to determine how pollutants or other stressors may impact human health and the environment
 - interacts with other agencies, the scientific community, industry policy-makers, and the public
 - innovative risk assessment methods and tools that help extrapolate between experimental data and real-world scenarios improve our understanding of uncertainties, and facilitate careful evaluation of scientific evidence

Toxicology & Risk Assessment

- Systematic review of existing human and animal data on potential health impacts
- When sufficient data exist, development of toxicological reviews that develop recommended levels of exposure that do not come with increase risk of adverse health effects
- ▶ Look at a few case example chemicals:
 - ▶ Polychlorinated Biphenyls (PCBs)
 - Phthalates

Polychlorinated Biphenyls (PCBs)

- 209 congeners
- Sold as commercial mixtures (1930-1977)
 - Aroclor (US); Kanechlor (Japan); Clophen (Germany), many other trade names
 - » >600 million kg/yr produced in US alone
- Persistent Organic Pollutants
 - banned by TSCA 1979
 - Stockholm Convention's Dirty Dozen 2001
- Not currently in use
 - PCB contamination continues through disposal of PCB-containing products and environmental partitioning
 - Many congeners have long half lives; bioaccumulative/biomagnification.

Extensive environmental contamination (ex: Great Lakes; Anniston, AL, NYC's Hudson River, etc.)

Human Exposure to PCBs

- General population
 - Contaminated food (fish, meat, dairy, others)
 - Inhalation of contaminated air (indoor settings; schools)
 - > -2ng PCB/kg-d (FDA; 2003)
 - Greater Exposures- recreational fishers; native American/subsistence fishers
- Occupational exposures
 - Inhalation and dermal contact in workplaces where PCBs are present
- Childhood Exposures
 - » Lactational transfer through breastfeeding
 - Inhalation exposures in schools
 - Difficulties with Characterizing PCB Exposures
 - ▶ Epidemiological studies use PCB serum levels, breast milk, or adipose tissue (commonly detected congeners: PCB-138, -153, and -180; PCB -28, -118, -180)
 - Exposure data consisting of only a few congeners may not accurately reflect exposures to other PCBs, which may be biologically active

Emerging PCB Sources

- Manufacturing processes result in inadvertent production of PCBs
 - Pigment production (PCB 11, 28, 52, 77, 209)
 - Paper recycling and colored inks
- Emerging issue, high levels of lower chlorinated congeners observed in water samples; PCB-11 specifically
 - > Toxicity of PCB-11 and uptake/accumulation not well understood
 - PCB-11 detected in humans
- Widespread Environmental Distribution

point sources and industrial/municipal waste water

Phthalocyacine green (prement)

PCB-11 may be a result of direct exposure in humans; currently being evaluated by NTP

PCB Exposure & Health Outcomes

- ▶ PCBs have been shown to impact variety of organ systems
- ▶ The modes of action are congener-dependent
- Animal Studies evaluating PCB toxicity have observed:
 - Thyroid Effects
 - Neurological effects
 - Immunological effects
 - Reproductive effects
 - Hepatic Effects
 - Developmental Effects
 - Other organ system effects

Currently, <u>IRIS PCB assessment (non-cancer)</u> will consider health effects listed above associated with exposure to PCB mixtures as they are found in the environment.

National Exposure Research Laboratory

- Exposure science
 - » Develops tools and understanding to quantify exposure in:
 - » Humans
 - Ecosystems

- Determining risk
- How to reduce or prevent risk
- Are mitigation strategies successful
- » Some of NERL's work is centered around
 - Monitoring methods development
 - Exposure/dose process characterization
 - Decision support tools
 - Predictive modeling
 - Tools for decision making
 - Source apportionment

4

1

Rapid Exposure and Dosimetry (RED) project

- RED is one of the current Chemical Safety for Sustainability (CSS) projects
 - Research projects (e.g. CSS) extend across labs/centers
- RED group
 - Human and ecological exposures for prioritization
 - develop the data, tools, and evaluation approaches required to generate <u>rapid</u>
 <u>exposure predictions</u>
 - models of human and ecological exposures, identification or generation of new high-throughput exposure data (e.g., chemical use or property information, consumer product use data, and consumer product and article chemical compositions, and ecological/biological monitoring data)
 - development of innovative <u>statistical techniques</u> for evaluating exposure predictions against available monitoring data.
 - develop the scientific approaches from <u>TaxCast</u> to predicted real world doses.
 - Rapid prediction allows <u>prioritization</u> based upon risk of adverse outcomes due to <u>environmental chemical exposure</u>

2.9

Understanding chemicals and quantifying exposures

- Biomonitoring data (human biological media)
 - Metabolites
 - Blood (serum and plasma), urine exhaled breath, breast milk, hair, teeth, saliva, etc.
- Physiologically Based PharmacoKinetic (PBPK)
 - » PK origins in medicine
 - > Time and concentration to determine dose
 - Extended to different exposures/ranges in an environ. setting
 - "PB" Based on the body compartments (mathematically modeled) instead of something entirely empirical
 - Body is arranged in a series of "compartments" set up towards a specific tissue
- High Throughput ToxicoKinetic (HTTK)
 - Large number of chemicals
 - Tying HTTK to rapid exposures

Rest of Body Body Blood

EPA databases and models

- » ToxCast (Toxicity Forecaster)
 - https://actor.epa.gov/dashboard/
 - Over 9,000 chemicals and approximately 1000 assay endpoints
 - explore the data from a chemical or an assay viewpoint, biological activity for the chemical assay combinations, downloaded by the user.
- CPDat (Chemical and Product Database)
 - https://actor.epa.gov/cpcat/faces/home.xhtml
 - >43,000 chemicals to a set of terms categorizing their usage or function from publically available sources. Unique use category taxonomies from each source are mapped onto a single common set of -800 terms.
- SHEDS-HT (Stochastic Human Exposure and Dose Simulation High Throughput)
 - https://www.epa.gov/chemical-research/forms/registration-download-and-use-sheds-software
 - $\,>\!\!>\,$ probabilistic models that estimate exposures people face from chemicals encountered in everyday activities
- CompTox (Computational Toxicology) Dashboard (AKA the Chemistry Dashboard)
 - » https://comptox.epa.gov/dashboard
 - develop innovative methods to change how chemicals are currently evaluated for potential health risk
- ExpoBox (Exposure Toolbox)
 - https://www.epa.gov/expobox
 - $\,\,$ exposure assessment tools that links to exposure assessment guidance, databases, models, key references, and related resources

IRIS (Integrated Risk Information System)

- https://www.epa.gov/iris
- identifying and characterizing the health hazards of chemicals found in the environment. Each IRIS assessment can cover a chemical, a group of related chemicals, or a complex mixture
- an important source of toxicity information used by state and local health agencies, other federal agencies, and international health organizations

National Health and Nutrition Examination Survey (NHANES)

- A program of studies designed to assess the <u>health</u> and <u>nutritional status</u> of adults and children in the United States
- The survey is unique in that it combines <u>interviews</u> and <u>physical examinations</u>
- Demographics, dietary information, examination data, laboratory data, questionnaire data
- Since 1999, ~5,000 people, once every 2 years, 100+ chemicals/metabolites

833

Phthalate	Abbreviation	Uses	Chemical Structures		
phthalic acid			-iz		
di-n-butyl phthalate	DBP	Adhesives, caulk, cosmetics, industrial solvent			
diisobutyl phthalate	DIBP	Adhesives, caulk, cosmetics, industrial solvent			
butyl benzyl phthalate	88P	Vinyl flooring, adhesives, sealants, industrial solvent			
di(2-ethylhexyi) phthalate	DEHP	Soft plastic, including tubing, toys, home products, food containers, food packaging		À	
diisononyl phthalate	DINP	Vinyl	. Opror		

Phthalates

- Some phthalates are endocrine disruptors
 - » Rat studies
 - "phthalate syndrome"
 - » Infertility, decreased sperm count,
 - » changes in reproductive organs
- » Phthalate mixture
 - » Most of this group (DBP, DIBP, BBP, DINP, DEHP) associated with the "phthalate syndrome"
- How much is manufactured?
 - 90,528 tons DEHP and 2,650 tons DBP in 2012 (Lee et al., Environment International, 2014) and 470 million pounds a year (EPA 2006)
- Which have the highest toxicity of these six phthalates?
 - S DBI
- Which can the most frequent exposures?
 - » DEHP and DINP
- National Academy of Science 2008 document
 - > Cumulative risk assessment
 - investigating mechanism of action to common adverse outcome

EPA phthalates action plan

- > Several studies have shown associations between phthalate exposures and human health
- Under TSCA, manufacturers and processors of DPP to notify EPA at least 90 days before starting or resuming new uses of this chemical (DPP in PVC pipe)

